
Analyzing Closeness of Code Dependencies for
Improving IR-based Traceability Recovery

Hongyu Kuang1, Jia Nie1, Hao Hu1, Patrick Rempel2, Jian Lü1, Alexander Egyed2, Patrick Mäder3

1State Key Lab fo r Novel Software
Technology

Nanjing University
Nanjing, Jiangsu, China

{hector.khy, niejia .nju}@gmail.com
{myou, lj}@nju.edu.cn

2Institute for Software Systems
Engineering

Johannes Kepler University
Linz, Austria

patrick.rempel@jku.at

alexander.egyed@jku.at

3Fakultät für Informat ik und
Automatisierung

Technische Universität Ilmenau
Ilmenau, Germany

patrick.maeder@tu-ilmenau.de

Abstract—Information Retrieval (IR) identifies traces based
on textual similarities among software artifacts. However, the
vocabulary mismatch problem between different artifacts
hinders the performance of IR-based approaches. A growing
body of work addresses this issue by combining IR techniques
with code dependency analysis such as method calls. However, so
far combined approaches considered each code dependency as
equally helpful for traceability recovery, not taking full
advantage of the code dependency analysis. In this paper, we
combine IR techniques with closeness analysis on code
dependencies to improve IR-based traceability recovery.
Specifically, we quantify and utilize the “closeness” for each call
and data dependency between two classes to improve rankings of
traceability candidate lists. An empirical evaluation based on
three real-world systems suggests that our approach outperforms
baseline approaches.

Keywords—Traceability Recovery, Information Retrieval,
Closeness Analysis, Call Dependencies, Data Dependencies

I. INTRODUCTION
Software traceability is defined as “the ability to interrelate

any uniquely identifiable software engineering artifact to any
other, maintain required links over time, and use the resulting
network to answer questions of both the software product and
its development process” [1]. Traceability links can support
stakeholders in development-related tasks. In a previous study
[2] we discovered that requirements-to-code traceability
strongly benefits developers in performing software
maintenance tasks. We found that subjects with traceability
data performed on average 24% faster on a maintenance task
and created on average 50% more correct solutions as
compared to maintenance tasks where traceability was not
available. These findings were based on correct and complete
traceability. Unfortunately, recent work has suggested that high
quality traceability links are difficu lt to obtain [3-5] due to the
typically large numbers of required traces, frequent changes in
software artifacts (especially in code), and informal nature of
the relationships.

Aiming at reducing the manual effort in traceability
recovery by providing semi-automated tools, Information
Retrieval (IR) has become perhaps the most widely accepted
and applied technique in recent traceability research [4-18].

Typical IR-based approaches compute the textual similarity
between two software artifacts (e.g., requirements and code)
through IR models including Vector Space Model (VSM) [6],
Latent Semantic Indexing (LSI) [7], and the probabilistic
Jensen and Shannon model (JS) [8]. These approaches provide
users with an automatically generated set of candidate
traceability links to help narrow down the search space for
potential links between artifacts. Due to the informal nature of
textual software requirements and a typical vocabulary
mismatch problem between requirements and code,
performance of those pure IR-based approaches is significantly
hindered. To address this issue, researchers have successfully
improved IR-based approaches in a variety of different aspects,
e.g., lexical analyses including hierarchies and clusters of
artifact texts [4], feedback from users [4, 10], topic modeling
[5], and code authors’ contexts [9].

Meanwhile, another body of work focused on combining
IR-based techniques with code dependency analysis to improve
traceability recovery [13, 14, 16] and similar researches such as
feature location [15], and concept location [17]. This kind of
IR-based approaches utilizes structural information of the
source code to be traced to complement textual analysis and
has proven to be very useful [12-18]. In the fo llowing, we refer
to this type of approach as combined IR-based approach. In
general, a combined IR-based approach will first locate a set of
candidate links by using IR techniques, and then either expand
or filter the init ial set of candidate links based on analyzing
dependencies among code elements (e.g., classes or methods).
Recent work successfully improved IR-based approaches by
either introducing advanced code dependency analyses such as
the PageRank algorithm [17] and by combining code analyses
with user feedback [13].

However, we argue that these approaches did not fully
exp lore available code information for two reasons. First,
previous approaches solely considered direct code
dependencies, i.e., calling relationships, class inheritance, and
class usage. However, these approaches neglect the similarly
important indirect code dependencies, i.e., data dependencies
that exist when two code elements read or manipulate the same
data [11, 19]. Second, previous approaches treated all code
dependencies as equally important. We argue that this

assumption is not always true as demonstrated in the following
example.

Consider a medical care system and a class named
MonitorAdverseEvent. Th is class has calling relationships
with to two other classes: MonitorAdverseEventAction
and AuthDAO. The first calling relationship is abstracting three
distinct method calls between the two classes while the second
one is abstracting only one method call. Furthermore,
MonitorAdverseEventAction is the only callee of
MonitorAdverseEvent, while AuthDAO will also be called
by other classes. Comparing the two calling relationships, the
former represents a stronger interaction between two classes
than the latter. This observation has already been used as
important heuristics in improving automated techniques for
extracting class refactoring based on class cohesion and class
coupling analysis [23-25].

In this paper, we propose that the degree of interaction for
each code dependency between two given classes in the code is
essential for further improving combined IR-based approaches.
With our previous finding showing that indirect data
dependencies in the code are also helpful for understanding
requirements-to-code traceability [11, 19], we developed a
code dependency concept, called closeness, to quantify the
degree of interaction based on direct and indirect code
dependencies among classes.

Based on this closeness measure, we further propose a
combined IR-based approach for traceability recovery. This
approach first utilizes IR techniques to generate candidate links
between requirements and source code classes. The result is a
ranked list of candidate links. This ranking is then changed in
two steps: (1) we combine the results of IR and closeness
analysis for all candidate links, and (2) we enhance the
candidate list by propagating links to code classes that have a
high closeness measure to classes that are identified in the IR
analysis. Eventually, the set of candidate links is re-ranked
according to the combined information of IR and code analysis.
We evaluated our approach in an empirical study and found
that our approach statistically significant outperforms pure IR-
based approaches (VSM, JS, and LSI) as well as two
previously proposed combined IR-based approaches [14, 17].
These results were obtained on three real-world systems.

The remainder of this paper is structured as follows.
Section II introduces the research background and discusses
the related work. Section III presents our proposed approach.
Section IV introduces our research questions and how we set
up the experiments based on three software systems for
answering those questions. Section V reports the results of our
experiments and answers the research questions. Section VI
refers to limitations and threats of our work. Finally, Section
VII concludes this paper.

II. BACK GROUND AND RELATED WORK
In this section we discuss related work in IR-based and

combined traceability approaches.

IR techniques are a widely studied and applied technology
in traceability research [4-18]. However, an important issue
hindering the performance of IR techniques when applied to

traceability recovery is the vocabulary mismatch problem
between source and target artifacts (e.g., requirements and
code). This problem remains the focus of ongoing research in
the field with various approaches proposed. For example,
Cleland-Huang et al. [4] presented three strategies to enhance
the matching results generated by their IR model based on
probabilistic networks. The key idea of those strategies is
introducing extra information when matching requirements
(such as the section name of a given requirement) and code
elements (such as the package name of a given class or method)
and to exclude keywords promoting wrongly retrieved traces.
Diaz et al. [9] ext racted additional “author contexts” (code
snippets that are commented by the same author) from code to
improve IR-based traceability recovery. When executing a
query with a high-level artifact, first the principle developer of
the artifact is located based on the textual similarity between
the query and the author context. Then rankings of classes
authored by this principle developer will be increase by an
adaptive bonus in the IR candidate list. Gethers et al. [5]
proposed an IR-based approach that integrates orthogonal
information generated by relational topic modeling, which
defines a comprehensive method for modeling interconnected
networks of documents in order to achieve a complementary
effect for improving traceability recovery. However, these
approaches require rich requirements descriptions and well-
documented code, which in practice is not always the case.
Furthermore, these approaches did not consider dependencies
among code elements.

In earlier work [3, 22], we studied calling relationships
between methods and found that requirements are typically
implemented in connected areas of the source code rather than
being randomly distributed. In a follow-on study [11, 19] we
found that indirect method data dependencies complement
method call dependencies in understanding requirements
traceability. The previous work formed the foundation for the
proposed approach in this paper.

There is work that incorporates code dependency analysis
to improve IR-based approaches for traceability recovery and
related research topics [12-18]. The majority of these
approaches focused on analyzing direct code dependencies (i.e.,
method calls, class inheritance, and class usage). Scanniello et
al. [17] introduced the PageRank algorithm to compute relative
importance for each code method based on their direct code
dependencies in the combined IR-based approach for concept
location. The methods in IR candidate lists are then re-ranked
by the product of their IR values and their relative importance
values. Panichella et al. [13] extended their previous work on
combining direct code and IR analysis [14] by utilizing user
feedback, which had previously been demonstrated helpful for
traceability recovery [4, 10]. Once, a user confirms a link in the
IR candidate list between a requirement and a method, the
rankings of methods connected to the chosen method by direct
code dependencies will increase by an adaptive bonus. Two
previous studies extended code analysis to indirect data
dependencies [12, 16]. McMillan et al. [12] created an
approach called Exemplar to find highly relevant software
projects (similar to traceability recovery) from large archives of
applications based textual similarity between user queries and
project descriptions, the API calls used in the projects, and the

data flow among these API calls. Eaddy et al. [16] developed a
so-called Prune Dependency Analysis based on dependencies
among methods, fields, and types in their approach which also
combines IR and execution tracing techniques.

Our approach is different from the discussed ones in two
aspects: (1) we analyze both direct and indirect code
dependencies in the code while most combined IR-based
approaches focused on one type solely (except for [12, 16]),
and (2) we propose a closeness measure for each code
dependency while other approaches treated all code
dependencies similarly. An exception is [17] where authors
propose to compute each method’s relative importance based
on its topology in a code dependency graph. However, in the
graph all code dependencies are still treated equally.

III. PROPOSED APPROACH
We propose a four-step approach. First, we capture and

organize code dependencies between classes (Step 1). Second,
we calculate closeness for captured code dependencies and
built a graph structure, called Code Dependency Graph
(CDCGraph), which combines captured code dependencies
and their calculated closeness measures (Step 2). Third, we use
IR techniques to generate candidate links between
requirements and classes (Step 3). Fourth, we re-rank and
enhance the candidate list generated in the previous step based
on the code analysis (Step 4). Each step is explained in more
detail in the following subsections. We use adapted excerpts of
the iTrust system [20] for illustration of relevant concepts.

A. Step 1: Capturing and Organizing Code Dependencies
1) Code dependencies among classes
We consider four kinds of dependencies between classes:

class call dependencies, class inheritance, class usage, and
class data dependencies. A call dependency between two
classes Ca and Cb means that there is at least one method call
between Ca and Cb. Figure 1 shows an iTrust excerpt covering
three classes: EmailUtil, MonitorAdverseEventAction,
and SendMessageAction. A class usage exists between
MonitorAdverseEventAction and EmailUtil. In method
MonitorAdverseEventAction.sendEmail(), an object of
type Email is initialized and passed through method calls to
SendMessageAction.saveReceiver() and EmailUtil.
sendEmail(). No call, class inheritance, and class usage
dependencies exist between EmailUtil.sendEmail() and
SendMessageAction.saveReceiver().

A class data dependency between two classes Ca and Cb
exists if two methods Ca.ma and Cb.mb read or manipulate the
same piece of information [11]. Our focus currently restricts to
data that is read and manipulated at runtime in an application’s
program memory. However, one could extend that concept to
other data, e.g., stored in the file system or on the web.
Methods may access that data directly or via a transitive chain
of aliases or pointers. This complex formulation is necessary as
the same underlying data is often accessed through references
or even chains of references, which are less obviously visible
than direct code dependencies. Figure 1 shows a data
dependency example. There are the obvious usage and call
dependencies between MonitorAdverseEventAction and

EmailUtil. However, there exists also a less obvious class
data dependency between SendMessageAction and
EmailUtil. SendMessageAction.saveReceiver() and
EmailUtil.sendEmail() both take the same Email object
as a parameter. Thus, all three classes (including
MonitorAdverseEventAction which also accesses the
Email object) access the same data object implying that all
three are data dependent based on the Email data type.

2) Capturing code dependencies
To capture the discussed four kinds of code dependencies,

we used our previously proposed dynamic analysis tool [11]
(available at http://www.sea.jku.at/tools), which relies on
JVMTI (Java Virtual Machine Tool Interface) to capture
method-level call and data dependencies. We decided to use
this tool: (1) since it instruments the JVM (Java Virtual
Machine) during runtime, we capture actually executed code
dependencies and handle polymorphism correctly; (2) we
capture all dependencies simultaneously by running test cases
in a single test run; and (3) potentially missing code
dependencies caused by incomplete testing do not jeopardize
our approach (further discussed in Section VI).

Based on the captured method-level dependencies, we
derive the discussed four kinds of class-level code
dependencies. First, class call dependencies are abstracted from
method call dependencies with the number of distinct method
calls having the same calling direction. Second, class data
dependencies are abstracted from method data dependencies
and keep all data types in those method data dependencies (e.g.,
the Email data type). Third, class usages are abstracted from
method data dependencies. Finally, class inheritance
dependencies are retrieved through method call dependencies,
i.e., the constructor of a derived class calling its base class’s
constructor.

3) Organizing code dependencies

class MonitorAdverseEventAction{
private EmailUtil emailUtil;…
public String sendEmail() {
Email mail = new Email();
SendMessageAction messenger

= new SendMessageAction();
messenger.saveReceiver(mail);
emailUtil.sendEmail(mail);
…}

}
class EmailUtil{

public void sendEmail(Email email){
factory.getFakeEmailDAO()

.sendEmailRecord(email);
}…

}
class SendMessageAction{

private MessageDAO messageDAO;…
public void saveReceiver (Email info){
messageDAO.addEmailMessage

 (info.getReceiver());
…}

}
Fig. 1. Code snippets from iTrust illustrating code dependencies

By consulting typical combined IR-based approaches (e.g.,
[14] and [17]), we treat class call dependency, class inheritance,
and class usage as one kind of code dependencies (namely
direct code dependencies) while the captured class data
dependencies as a different one. The reason why combining the
first three code dependencies is that these kinds of code
dependencies are structurally similar (directed links from
source classes to sink classes) while our captured class data
dependencies are different in structure (undirected links
between two classes with shared data types). Meanwhile, class
call dependency, class inheritance, and class usage largely
overlap with each other while class data dependency slightly
overlaps with direct code dependencies (more details refer to
Section VI). So we calcu late closeness measures for these two
kinds of code dependencies separately.

Figure 2 depicts samples of captured direct code
dependencies and class data dependencies. In the figure a
direct code dependency is represented by a solid line with
arrow and is labeled with the number of method calls and/or
class usages while a data dependency is represented by a
dashed line without arrow which is labeled with the number of
shared data types.

Fig. 2. Samples of captured class call (solid lines with arrow) and class data
dependencies (dashed lines) between classes

B. Step 2: Calculating Closeness and Creating CDCGraph
We now calculate the closeness measure for captured code

dependencies. After that we create our Code Dependency with
Closeness Graph (CDCGraph) for the follow-up steps.

1) Calculating closeness for direct code dependencies
In the introduction, we gave an example to demonstrate that

different code dependencies can indicate different degrees of
interactions between classes. The two discussed direct code
dependencies between the three involved classes:
MonitorAdverseEventAction, MonitorAdverseEvents,
and AuthDAO are shown in Figure 2. It seems intuitive that if
two classes share mult iple d istinct method calls and class
usages among each other then these two classes interact more
closely. Less straightforward, but equally important, is the
sink’s in-degree (number of classes which reach the sink) and
source’s out-degree (number of classes which are reached by
the source) in a direct code dependency. Specifically, a smaller
sink’s in-degree indicates that the sink class is more
concentrate to serve the source class, instead of providing a
common service. Meanwhile, smaller source’s out-degree
means that the source class focuses more on the service

provided by the sink class. Based on these two observations,
we define ClosenessDC for direct code dependencies:

where N represents the number of distinct methods calls and
class usages from a given direct code dependency between two
classes, WeightedInDegreeSink represents sink’s in-degree, and
WeightedOutDegreeSource represents source’s out-degree. Both
are weighted by the number of methods and class usages, i.e.,
N of each related direct code dependency.

For the example in Figure 2, the direct code dependency
from MonitorAdverseEvents to AuthDAO has a closeness
of 2*3 / ((1 + 3) + 3) which equals to 0.86, while the direct
code dependency from MonitorAdverseEvents to
MonitorAdverseEventAction has a closeness of 2*1 / ((1 +
1) + (1 + 3)) which equals to 0.33. The former is higher than
the latter, showing that MonitorAdverseEvents interacts
more closely with MonitorAdverseEventAction than with
AuthDAO based on our analysis.

2) Calculating closeness for class data dependencies
As we discussed in Section III.A, part 1, a data dependency

between two classes exists due to shared data types among
each other. The three shared data types in Figure 2 are shown
in the rows of Table I. The “Occurrences” column shows how
often a data type occurred across all class data dependencies of
the iTrust system. The table shows that the data type
DAOFactory is occurring much more often than the other two
data types. A closer look at the source code shows that this
class is responsible for all database accesses of iTrust and
shared by many classes of the system (a typical J2EE pattern),
indicating that DAOFactory is too general to be helpful for
analyzing closeness between classes. Therefore, the closeness
of classes based on data dependencies should consider the
importance of each shared data type. We introduce a weighting
factor called Inverse Data Type Frequency (idtf) [11] as:

where N is the total number of captured data dependencies and
ndt is the occurrence of a given data type in all data
dependencies. The calculated idtf values for each data type in
the sample are also shown in Table I (the value of N is 4844).

TABLE I. DATA TYPES SHARED IN THE EXAMPLE OF FIGURE 2

Data type Occurrences idtf Value
1 Email 9 2.7310
2 Java.lang.String 1118 0.6368
3 DAOFactory 4478 0.0341

By setting a Thresholdidtf, commonly shared data types,
such as DAOFactory in the example, do not negatively impact
the analysis result anymore. Data types with idtf values lower
than the Thresholdidtf will be ignored and if all data types in a
class data dependency are ignored the whole data dependency
is ignored for analysis. Threshold calibration will be discussed
in Section IV. Assuming a threshold of 0.6 for the example in

Figure 2 the data dependency between PatientDAO and
MonitorAdverseEventAction would be ignored.

Like the idf concept used in IR [21], the idtf value reflects
how much a data type is shared globally across the source code.
A higher idtf means that a data type is more uniquely shared
between two classes, indicating a stronger interaction. Besides,
for a class data dependency between two classes Ci and Cj, the
ratio between the number of shared data types in this
dependency and the number of all data types shared by these
two classes (from other data dependencies) can represent how
these two classes share data types with each other “locally”,
like the tf concept [21] in IR. The higher ratio represents a
more d iversified data sharing between two classes.

We define ClosenessCD for class data dependencies as:

where idtf(x) represents the idtf value for data types larger than
Thresholdidtf and DTi and DTj represent the sets of all data
types that Ci and Cj share respectively.

For the example in Figure 2, the class data dependency
between MonitorAdverseEventAction and EmailUtil
has a closeness of 2.73 / (2.73 + 0.64) which equals to 0.81,
while the class data dependency between AdverseEventDAO
and MonitorAdverseEventAction has a closeness of 0.64 /
(0.64 + 2.73) which equals to 0.19. The former is higher than
the latter, showing that MonitorAdverseEventAction
interacts more closely with EmailUtil than with
AdverseEventDAO based on class data dependencies.

3) Generating the CDCGraph
With all details described above, we can now create a Code

Dependency Graph (CDCGraph) as G=<V, E>. Each vertex V
represents a class of the analyzed source code and being
annotated with its name. Furthermore, we distinguish two
kinds of edges E in the graph: EDC representing direct code
dependencies and ECD representing indirect class data
dependencies between two classes. Furthermore, each code
dependency is annotated with the calcu lated closeness measure.
A derived CDCGraph based on the sample code of Figure 2 is
shown in Figure 3.

Fig. 3. Sample CDCGraph showing direct code dependencies as solid arcs
with arrow and class data dependencies as dashed arcs, both annotated with
the computed closeness measure

C. Step 3: Generating IR candidate lists
We use IR techniques to generate traceability link

candidates between a given requirement and the code.
Specifically, we perform the following steps to gain
traceability link candidates:

• Creating corpus. Each class of the source code is extracted
into one document including its identifiers, name, method
names, property names, and comments. For each
requirement we extract a document that includes its title
and content (e.g., preconditions, main-flow, and sub-
flows if structured use case and pure text otherwise).

• Normalizing corpus. The documents of both requirements
and classes are normalized by standard pre-processing
techniques including splitting identifiers, special token
elimination, stemming, and stop word removal.

• Indexing corpus and computing textual similarity. We use
tf-idf for corpus indexing and three different IR models to
compute textual similarity: Vector Space Model (VSM)
[6], Latent Semantic Indexing (LSI) [7], and the
probabilistic Jensen and Shannon (JS) model [8].

• Generating candidate links. In candidate lists per
requirement, we rank classes by their textual similarity to
a requirement in descending order.

Table II shows part of a candidate list generated using
VSM for one use case UC36 (“Monitor adverse event”) of the
iTrust system and the ten classes also shown in Figure 3. The
list is ranked based on probability in descending order. An ‘X’
in column “Is trace” marks an actual trace between a class and
the use case based on the oracle of correct traces for iTrust.

TABLE II. A SAMPLE CANDIDATE LIST BETWEEN REQUIREMENT UC36
AND TEN CLASSES OF THE IT RUST SYSTEM AFTER STEP 3

Class IR
Value

Is
Trace

1 MonitorAdverseEventAction 0.3492 X
2 ReportAdverseEvent 0.2723
3 MonitorAdverseEvents 0.2568 X
4 EditPersonnelAction 0.2349
5 AdverseEventDAO 0.2286 X
6 AdverseEventBeanLoader 0.1926 X
7 SendMessageAction 0.1338 X
8 EmailUtil 0.0964 X
9 PatientDAO 0.0529 X

10 AuthDAO 0.0369

D. Step 4: Reordering Candidate Lists based on Closeness
We aim to improve the initial IR-based ranking traceability

candidate lists based on the computed closeness measure. This
step is inspired by the following two findings: (1) top ranked
classes in IR candidate lists are likely to be traced to a given
requirement [4]; and (2) requirements are implemented in
connected areas of the source code, so-called requirement
regions, rather than being randomly distributed [3]. Based on
these two observations, we developed a re-rank algorithm
involving two steps. First, we compute an initial requirement
region in the CDCGraph and promote all classes in the region.

Second, we re-rank other classes that are not in the initial
region by giving bonuses based on their code dependencies to
classes that are in the initial region.

1) Computing initial requirement region
To establish an initial requirement region for a given

requirement, we choose the top ranked class of the IR
candidate list as seed for the initial requirement region. We
then identify close classes based on code dependencies in
CDCGraph. This region is being established for each
requirement using two strategies based on two kinds of code
dependencies. Considering direct code dependencies only, if
the top ranked class reaches (or is reached by) other classes
through direct code dependencies with closeness measures
equal or higher than a ThresholdDC, we add these sinks (or
sources) in the initial region and restart the same process from
each newly added class until no more sinks (or sources) are
added. Meanwhile, considering class data dependencies only,
classes with data dependencies that have closeness measures
equal or higher than ThresholdCD and directly relate to the top
ranked class will be added to the initial requirement region. If
the top ranked class has no neighboring classes through either
direct code dependencies or class data dependencies with
closeness measures higher than the two thresholds, we put the
next ranked class from the candidate list in the initial region
and repeat the process until we find a class with neighbor
classes. The IR values of newly added neighbor classes will be
set to the same value of the top ranked class with neighbor
classes (other than top ranked class without neighbor classes).
We are using the following algorithm to establish initial
requirement region based on IR candidate lists and CDCGraph:

To show how Algorithm 1 works, for the example
candidate list in Table II, the top ranked class for requirement
UC36 is MonitorAdverseEventAction. We assume a
ThresholdDC of 0.7 and a ThresholdCD of 0.8. According,
MonitorAdverseEvents will be added to the initial region
based on direct code dependencies while EmailUtil and
SendMessageAction are added to the region based on
indirect class data dependencies (see also Figure 3). The
reordered IR candidate list after this step is shown in Table III.

TABLE III. REORDERED CANDIDATE LIST BETWEEN REQUIREMENT UC36
AND TEN CLASSES OF THE IT RUST SYSTEM AFTER ESTABLISHING INITIAL

REQUIREMENTS REGION (ADAPTED RANKING VALUES IN BOLD)

Class Ranking
Value

Is
Trace

1 MonitorAdverseEventAction 0.3492 X
2 MonitorAdverseEvents 0.3492 X
3 SendMessageAction 0.3492 X
4 EmailUtil 0.3492 X
5 ReportAdverseEvent 0.2723
6 EditPersonnelAction 0.2349
7 AdverseEventDAO 0.2286 X
8 AdverseEventBeanLoader 0.1926 X
9 PatientDAO 0.0529 X

10 AuthDAO 0.0369

2) Re-ranking candidate links outside initial region
We now re-rank candidate links outside initial requirement

regions by enhancing IR values of those links based on how
their classes interact with classes in the initial regions
according to the CDCGraph and their original IR values.
Similar to the previous sub-step, we use two different strategies
on direct code dependencies and class data dependencies
separately for the enhancement.

Considering direct code dependencies only, for an outside
candidate link we start from its class Cout to traverse the
CDCGraph. We try to find a path from Cout to a class Cin that is
already in the in itial region. A valid path needs to satisfy two
conditions: (1) it can only have one direction, meaning Cout
transitively reaches or is transitively reached by Cin; (2) it
cannot contain more than one class in initial region (to avoid
duplicates). If a valid path is found, we calculate the geometric
mean of the closeness measures for all direct code
dependencies in this path and use the following formula to
recalculate IR value for Cout (IRDC):

where IRorigin represents the original IR value of Cout, IRtop
represents the promoted IR value of Cin, PATH represents the
set of direct code dependencies in a discovered path between
Cout and Cin, and ClosenessDC(x) represents the closeness
measure for each direct code dependency in the path. It is
possible that there are multiple paths to the same Cin and we
only keep the one to maximize the enhanced IR value.

On the other hand, considering class data dependencies
only, if the class of an outside link Cout can directly connect to
a class Cin in the initial region, we use the following formula to
recalculate bonuses based on class data dependencies (IRCD):

where IRorigin represents the original IR value of Cout, IRtop
represents the promoted IR value of Cin, and ClosenessCD(x)
represents the closeness measure of the class data dependency
that directly connect Cin and Cout.

If paths to multiple Cins (or mult iple d irect neighboring
classes in the initial region) are found based on direct code
dependencies (or class data dependencies), the IR value of the
candidate link can be increased multiple t imes by taking the
enhanced value as the original one. The IR value of the outside

candidate link can be increased through both direct code
dependencies and class data dependencies but not higher than
Cin’s IR value. We are using the following algorithm to reorder
candidate links outside initial requirement region:

To show how Algorithm 2 works, For the example in
Figure 3, AdverseEventDAO is outside the initial region. This
class has one path to MonitorAdverseEventAction and is
also directly connected to it by a class data dependency. So
IRDC for AdverseEventDAO is 0.23 + (0.35 - 0.23) * 0.31
which equals to 0.27. Furthermore, IRCD for this class is 0.27 +
(0.35 - 0.27) * 0.19 which equals to 0.28. Meanwhile, there is a
path from MonitorAdverseEventAction to
AdverseEventBeanLoader containing two direct code
dependencies. The geometric mean of the closeness measures
for the two dependencies is 0.56 and IRDC for AdverseEvent
BeanLoader is 0.19 + (0.35 - 0.19) * 0.56 which equals to
0.28. The re-ranked list after this sub-step is shown in Table IV.

TABLE IV. REORDERED CANDIDATE LIST BETWEEN REQUIREMENT UC36
AND NINE CLASSES OF THE IT RUST SYSTEM AFTER REORDERING LINKS
OUTSIDE INITIAL REGION (ADAPTED RANKING VALUES SHOWN IN BOLD)

Class IR
Value

Is
Trace

1 MonitorAdverseEventAction 0.3492 X
2 MonitorAdverseEvents 0.3492 X
3 SendMessageAction 0.3492 X
4 EmailUtil 0.3492 X
5 AdverseEventDAO 0.2818 X
6 AdverseEventBeanLoader 0.2798 X
7 ReportAdverseEvent 0.2723
8 EditPersonnelAction 0.2349
9 PatientDAO 0.1892 X

10 AuthDAO 0.1400

IV. EXPERIMENTAL SETUP
In this section, we introduce our experimental setup to

evaluate the proposed approach. In Section IV.A, we introduce
the three evaluated systems and discuss the three studied IR
models. In Section IV.B, we define metrics for evaluating the
performance of the proposed approach. In Section IV.C we
refer to threshold calibration for the proposed approach and
finally in Section IV.D we discuss our research questions and
the design of experiments.

A. Evaluated Systems and IR Models
Our evaluation is based on three real-world, medium-sized

software systems: iTrust [20], GanttProject [27], and jHotDraw
[28]. Table V lists basic metrics about the three systems. The
three systems comprised 160 kLoC. We chose these systems
because of the availability of requirements specifications and,
more significantly, “gold standard” requirements-to-code
traces. For jHotDraw and GanttProject, we gained high quality
requirements-to-code traces by recruiting the original
developers. For iTrust high quality requirements-to-code traces
were already available [20]. The RTM of iTrust contains
method-level traces while the RTMs of jHotDraw and
GanttProject are at class-level. To keep our experiment
consistent at the same trace granularity, we propagated the
method-level traces of iTrust to class-level. This means that
we aggregated all traces to methods of a class on the class-level.
To ensure the generalizability of our results, we involved three
well-accepted IR models, namely VSM, LSI, and JS.

TABLE V. OVERVIEW OF THE THREE EVALUATED SYSTEMS

 iTrust
[20]

Gantt
Project[27]

jHotDraw
[28]

Version 13.0 2.0.9 7.2
Programming language Java Java Java
KLoC 43 45 72
Executed classes 131 124 144
Evaluated requirements 34 16 16
Direct code dependencies 274 452 691
Class data dependencies 4844 1788 1815
Trace links in RTM 248 315 221

B. Metrics
To evaluate the performance of different traceability

recovery approaches, we leveraged two well-known metrics:

where correct represents the set of correct links and retrieved is
the set of all links retrieved by traceability recovery approaches.
A common way for evaluating the performance of IR methods
is to compare the precision values obtained at different recall
levels resulting in a set of precision-recall points displayed as
graphs. We further leveraged the following two metrics to
measure the approach’s performance: average precision (AP)
and mean average precision (MAP). These metrics are widely
used to evaluate IR-based approaches for traceability recovery
(e.g., [13] and [8]). AP measures how well relevant documents
of all queries (requirements) are ranked to the top of the
retrieved links and it is computed as:

where r is the rank of the target artifact in an ordered list of
links, Precision(r) denotes its precision value, isRelevant() is a
binary function assigned 1 if the link is relevant and 0
otherwise, and N is the total number of documents. Meanwhile,
MAP is the mean of the AP scores over a set of queries
(requirements) and is computed across all queries as follows:

where q is a single query and Q is the total number of queries.
For more comprehensive evaluations we use both AP and
MAP to study our research questions.

C. Threshold Calibration
In Section III, we introduced four thresholds: Thresholdidtf,

ThresholdDC, ThresholdCD, and the k value for LSI. Based on
previous investigations [11] and case study results, we defined
a fixed Thresholdidtf (1.4). To calibrate ThresholdDC, we first
used the 3σ criterion to filter out outliers (closeness measure
three times higher or lower than the standard deviation σ) from
the set of ClosenessDC. We then used min-max normalization to
rescale closeness measures into [0, 1]. Filtered abnormally high
closeness measures were set to 1 and abnormally low closeness
measures were set to 0 in the rescaled range. We defined a
fixed threshold for all nine experiment variations to maximize
the performance of our approach based on the proposed metrics
in Section IV.B. We used the same process to find ThresholdCD.
This led to a ThresholdDC of 0.7 and a ThresholdCD of 0.9.
These values are adaptive thresholds for establishing the initial
requirement region for a given requirement only. We still use
original closeness measures to re-rank candidate links outside
the initial region. For the k value of the LSI method, we found
that k = 85 provided the best accuracy for all three systems.

Since we use the same fixed four thresholds for all nine
experiment variations, they are not biased by varying
thresholds. For new datasets we propose the discussed
calibration process to identify thresholds.

D. Research Question
In this paper, we aim to study if combined IR-based

approaches for traceability recovery can be improved by

considering additional code dependencies. Therefore, we
formulated the following research question:

Can our approach outperform baseline approaches for IR-
based traceability recovery?

To study RQ, we compared the results of our approach with
three baseline approaches: a pure IR-based approach (namely
IR-ONLY), the pioneer of combined IR-based approaches
Optimistic Combination of Structural and Textual Information
(O-CSTI [14]), and the most recent one using PageRank [17].
We name our proposed approach as TRICE (Traceability
Recovery based on Information retrieval and ClosEness
analysis).

Besides the proposed metrics in Section IV.B, we used a
statistical significance test to verify that the performance of
TRICE is significantly better than the performance of the
baseline approaches. By consulting the significance test used in
[29], we use the F-measure at each recall point as the single
dependent variable of our study. We use the F-measure
because we want to know whether TRICE improves both
precision and recall. The F-measure is computed as:

where P represents precision and R represents recall and F is
the harmonic mean of P and R. A higher F-measure means that
both precision and recall are high. Because the F-measure is
the same for each approach at the same level of recall (i.e., the
data were paired), we decided to use the Wilcoxon rank sum
test [26] to test the following null hypothesis:

H0: There is no difference between the performance of
TRICE and baseline approaches

We use α = 0.05 to accept or refute the null hypothesis.

V. RESULTS AND DISCUSSION
Table VI shows the results of the three evaluated systems

(rows). For each system and each IR technique (columns), we
compared the performance of the three baseline approaches
with TRICE (sub rows). Therefore, we leveraged the
introduced performance metrics AP and MAP (sub column 1
and 2). Sub column 3 shows the p-value of the F-measure
significance test. The p-value results indicate that TRICE

TABLE VI. NUMBER OF COMPUTED METRICS AND P-VALUE EVALUATING THE PERFORMANCE OF EACH APPROACH FOR ALL NINE EXPERIMENT VARIATIONS

 VSM LSI JS
AP MAP p-value AP MAP p-value AP MAP p-value

iTrust

IR-ONLY 45.18 58.69 0.02 45.47 59.92 0.03 42.21 56.90 < 0.01
TRICE 49.21 61.65 - 49.12 62.70 - 49.33 62.61 -
PageRank 42.42 54.03 0.13 39.07 49.47 0.82 30.76 39.31 < 0.01
O-CSTI 37.24 44.87 0.63 34.17 42.02 0.14 27.24 34.80 < 0.01

Gantt Project

IR-ONLY 42.85 49.80 < 0.01 43.94 51.70 < 0.01 36.30 46.77 0.01
TRICE 46.42 54.00 - 43.56 52.40 - 40.11 49.70 -
PageRank 43.34 48.84 < 0.01 41.18 45.38 < 0.01 39.76 43.98 < 0.01
O-CSTI 42.84 47.70 < 0.01 38.06 41.18 < 0.01 35.80 39.20 < 0.01

JHotDraw

IR-ONLY 41.13 50.09 0.35 42.23 49.51 0.02 37.06 44.86 0.01
TRICE 43.24 52.05 - 44.51 51.91 - 39.20 47.10 -
PageRank 26.12 29.24 < 0.01 22.48 22.52 < 0.01 18.24 18.28 < 0.01
O-CSTI 21.74 23.00 < 0.01 18.95 20.23 < 0.01 18.57 19.92 < 0.01

outperforms the baseline approaches in most cases. In 22 of 27
cases the F-measure for results of TRICE is significantly
higher than the F-measure of the compared baseline approach
(p-value < 0.05). Moreover, TRICE generally outperforms all
three baseline approaches in both AP and MAP. The only
exception is comparing with IR-ONLY on Gantt-LSI where
TRICE is slightly worse in AP (less than 0.5). Figure 4
compares the precision/recall curves for all nine experiments,

illustrating the performance of the four approaches. The results
are grouped by evaluated system and IR model.

As shown in both Table VI and Figure 4, our experiments
did not provide any evidence that O-CSTI and PageRank can
significantly outperform the IR-ONLY approach. Thus, we
focus on comparing TRICE with IR-ONLY. Table VII shows
the differences between the precision values and the
differences of the number of false positives achieved with

TABLE VII. IMPROVEMENT OF PRECISION AND REDUCTION OF NUMBER OF FALSE POSITIVES (IN BOLD) AT DIFFERENT LEVELS OF RECALL (COMPARISON
BETWEEN TRICE AND IR-ONLY)

 Recall (20%) Recall (40%) Recall (60%) Recall (80%) Recall (100%)
 Precision FP Precision FP Precision FP Precision FP Precision FP
VSM VSM +8.64% -6 +5.12% -13 +3.00% -89 +2.74% -280 +0.43% -275

JS +18.58% -13 +21.37% -64 +5.76% -196 +2.57% -445 0.00% 0
LSI +1.46% -1 +4.52% -12 +3.40% -86 +4.39% -425 +0.33% -234

Gantt Project VSM +7.86% -14 +6.03% -36 +3.81% -52 +0.62% -28 0.00% +1
JS +1.75% -6 +5.33% -37 +1.11% -15 -0.46% +13 0.00% 0
LSI -1.94% +3 +2.92% -20 +3.24% -45 +2.63% -83 +0.28% -30

jHotDraw VSM +1.95% -2 +4.16% -20 +0.91% -14 -3.81% +185 0.00% 0
JS -0.68% +1 +6.97% -31 +2.54% -42 +2.52% -142 +0.06% -13
LSI -2.20% +2 +4.66% -21 +3.54% -51 +0.23% -12 +0.15% -34

Fig. 4. Precision/Recall curves for all nine experiment variances grouped by evaluated systems (iTrust, Gantt, jHotDraw) and IR models (VSM, LSI, JS)

TRICE and IR-ONLY at different levels of recall for nine
experiment variat ions. From Figure 4 and Table VII we
observe an improvement of precision up to 21.37% (on iTrust-
JS at 40% recall) and an improvement of reduced false
positives up to 445 (on iTrust-JS at 80% recall). We also
observed that TRICE barely introduced extra false positives
compared to IR-ONLY at each recall level except for one place
where extra 185 false positives were introduced: jHotDraw-
VSM at 80% recall. These findings are very beneficial because
by adding our closeness metric (closeness measures and re-
rank algorithms) to IR-based traceability recovery, the
performance of the combined approach can be effectively
improved with few extra false positives introduced.

We made two additional observations. First, TRICE makes
fewer improvements at 100% recall compared to other recall
levels. This observation is similar with those from other case
studies (such as [9, 13]) and confirms that there is an upper
bound to the performance improvements when aiming at
recovering all correct links, which is difficu lt to overcome. The
other observation is that TRICE can make bigger
improvements if it is based on IR candidate lists with higher
quality, (e.g., iTrust-JS against jHotDraw-VSM), implying that
TRICE would further benefit from improvements for IR-based
traceability recovery and even collaborate with those.

Overall, the results indicate that our proposed closeness
analysis is useful to improve IR-based traceability recovery.
Such an improvement is particularly evident when the recall is
between 20% and 80%

VI. THREATS TO VALIDITY
A possible threat to validity of our results is the

incompleteness of code dependencies because of missed call
and data dependencies due to the incompleteness nature of
dynamic analysis. However, we consider this incompleteness
not as a serious threat regarding our experiment results.
Missing dependencies could have negatively impacted TRICE
leading to too pessimistic observations instead.

In Section III.A we mentioned that our approach treats
class call dependencies, class usage and class inheritance as
one kind of code dependency (direct code dependency) since
they are structurally similar to each other. Furthermore, we also
found that these three kinds of code dependencies largely
overlap with each other based on our investigations to all
evaluated systems. First of all, since class inheritance is
retrieved through method call dependencies, i.e., the
constructor of a derived class calling its base class’s
constructor, it is totally overlapped with class call dependency.
Second, although class usage is abstracted from method data
dependencies, in iTrust 113 class usages (119 in total) overlap
with class call dependencies (268 in total); in jHotDraw 105
class usages (105 in total) overlap with class call dependencies
(691 in total); and in GanttProject 85 class usages (165 in total)
overlap with class call dependencies (372 in total). Th is
observation is reasonable because if a class is using another
class as its field then the former generally calls the methods of
the latter unless the fields of the latter are directly accessible to
the former, which is not common in practice (GanttProject is a
little d ifferent since its source code contains several inner

classes). In contrast, in iTrust 140 class data dependencies
(4844 in total) overlap with direct code dependencies (274 in
total); in jHotDraw 415 class data dependencies (1815 in total)
overlap with d irect code dependencies (691 in total); and in
GanttProject 296 class data dependencies (1788 in total)
overlap with direct code dependencies (452 in total). Th is
investigation provides support for our approach to treat direct
code dependencies and class data dependencies separately.

Another possible threat to validity of our results is the
selection of evaluated systems. It is difficult to find software
systems that are executable, contain rich requirements for IR
techniques to work, that have existing traceability links, and
are freely accessible. For example, we cannot use the well-
researched data sets provided by CoEST [1] (such as
EasyClinic and eTour) to evaluate our approach because they
do not contain executable versions of their systems and we
cannot capture high-quality code dependencies from these
systems. We cannot claim generalizability of results to
different kinds of systems based on the three medium-sized
systems. However, we consider our findings still relevant since
we evaluated three real-world systems from different domains
(iTrust: J2EE medical care system, GanttProject: project
planning, and jHotDraw: drawing tool). Furthermore, we
combined the evaluated systems with three well-known yet
distinct IR models (i.e ., VSM, LSI, and JS) to generated nine
experiment variat ions in total (e.g., iTrust-JS and jHotDraw-
VSM). We then compare our approach with baseline
approaches based on these experiment variations.

VII. CONCLUSIONS AND FUTURE WORK
Dependencies in source code (e.g., method calls) have been

repeatedly used in solutions to improve IR-based traceability
recovery. However, these approaches focused on direct code
dependencies for traceability recovery and treated each code
dependency equally. In this paper, we considered additionally
class data dependencies and proposed a closeness measure to
quantify the degree of interaction between two classes. We
further proposed an approach to improve IR-based traceability
recovery by incorporating the closeness measure. We evaluated
our approach on three software systems and found that it
outperforms three baseline approaches significantly.

Currently, our approach is analyzing direct code
dependencies and class data dependencies first separately and
then combined. In future work we want to find out whether
certain combinations (or patterns) on different kinds of code
dependencies will also be helpful for traceability recovery.
Another promising research direction is to combine our
closeness analysis with user feedback for IR-based approaches.

ACKNOWLEDGMENT
We are funded by the 973 Program of China grant

2015CB352202 and the National Natural Science Foundation
of China (NSFC) grants: 91318301, 61321491, 61100037,
61100038, 61472177; by the German Ministry of Education
and Research (BMBF) grants: 16V0116, 01IS14026A; and the
Austrian Science fund (FWF) grant: P 23115-N23.

REFERENCES

[1] CoEST: Center of excellence for software traceability,
http://www.CoEST.org

[2] P. Mäder and A. Egyed, "Assessing the effect of requirements
traceability for software maintenance," 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 171-180, 2012

[3] B. Burgstaller and A. Egyed, “Understanding where requirements are
implemented”, in 26th IEEE International Conference on Software
Maintenance (ICSM), T imi șoara, Romania, 2010, pp. 1-5.

[4] J. Cleland-Huang, R. Settimi, C. Duan and X. Zou, “Utilizing supporting
evidence to improve dynamic requirements traceability”, in the 13th
IEEE International Conference on Requirements Engineering (RE),
2005, pp.135-144.

[5] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery”, in the 27th IEEE International Conference on
Software Maintenance (ICSM), 2011, pp. 133-142.

[6] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
"Recovering Traceability Links between Code and Documentation",
IEEE Transactions on Software Engineering(TSE), 28(10), pp. 970-983,
2002.

[7] A. Marcus and J I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing”, in the 25th IEEE
International Conference on Software Engineering (ICSE), 2003, pp.
125-135.

[8] A. Abadi, M. Nisenson, and Y. Simionovici, “A Traceability Technique
for Specifications”, in the Proceedings of the 16th IEEE International
Conference on Program Comprehension (ICPC), 2008, pp. 103-112.

[9] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, and A. D.
Lucia: "Using code ownership to improve IR-based traceability link
recovery," in the 21st
International Conference on Program Comprehension (ICPC), 2013, pp.
123-132.

[10] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and
user feedbacks: a silver bullet for traceability recovery”, in Proceedings
of the 22nd IEEE International Conference on Software Maintenance
(ICSM), 2006, pp. 299-309.

[11] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang, J. Lü, and A.
Egyed, “Can method data dependencies support the assessment of
traceability between requirements and source code?”, Journal of
software: Evolution and Process (J. Softw. Evol. and Proc.), 2015,
Volume 27, Issue 11, pp. 838–866.

[12] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, Q. Xie, "Exemplar:
A Source Code Search Engine For Finding Highly Relevant
Applications," IEEE Transactions on Software Engineering (TSE), 99,
2011.

[13] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D.
Poshyvanyk, and A. De Lucia: “When and How Using Structural
Information to Improve IR-Based Traceability Recovery.” In CSMR,
2013, pp. 199-208

[14] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining textual and
structural analysis of software artifacts for traceability link recovery,” in
Proceedings of the International Workshop on Traceability in Emerging
Forms of Software Engineering, 2009, pp. 41–48.

[15] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: Towards a
Static Noninteractive Approach to Feature Location," ACM
Transactions on Software Engineering and Methodology (TOSEM),
15(2), pp. 195-226, 2006.

[16] A. V. Aho, Marc Eaddy, Giuliano Antoniol, Yann-Gaël Guéhéneuc,
"CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis," in 16th IEEE
International Conference on Program Comprehension (ICPC),
Amsterdam, The Netherlands, 2008, pp. 53-62.

[17] G. Scanniello, A. Marcus, D. Pascale, “Link analysis algorithms for
static concept location: an empirical assessment”, in Empirical Software
Engineering (EMSE), pp. 1–55, 2014.

[18] E. Hill, L. Pollock, and K. Vijay-Shanker, "Exploring the Neighborhood
with Dora to Expedite Software Maintenance", in the 22th IEEE/ACM
international conference on Automated software engineering (ASE),
Atlanta, Georgia, 2007, pp. 14-23.

[19] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang, J. Lv, and A. Egyed,
"Do data dependencies in source code complement call dependencies for
understanding requirements traceability?", in 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp.181-190.

[20] iTrust System: http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
[21] R. Baeza-Yates and B. Ribeiro-Neto, “Modern information retrieval”.

New York: ACM press, 1999.
[22] A.Ghabi and A. Egyed. “Co de patterns for automatically validating

requirements-to-code traces”, in the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE). New York,
NY, USA, 2012; 200–209

[23] M. Fowler, “Refactoring: improving the design of existing code”,
Pearson Education India, 1999.

[24] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, “Automating Extract
Class Refactoring: an Improved Method and its Evaluation”, Empirical
Software Engineering (EMSE), 2013, Volume 19, Issue 6, pp. 1617-
1664.

[25] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying Extract Class
Refactoring Opportunities Using Structural and Semantic Cohesion
Measures”, The Journal of Systems and Software (JSS), 2011, pp. 397-
414.

[26] W. J. Conover, “Practical Nonparametric Statistics (3rd edn)”,
Wiley: Hoboken, New Jersey, USA, 1998

[27] GanttProject: http://www.ganttproject.biz
[28] jHotDraw: http://jhotdraw.org
[29] N. Ali, Z. Sharafi, and Y. Gueheneuc, “An empirical study on the

importance of source code entities for requirements traceability”,
Empirical Software Engineering, 2014, 20(2): 442-478

	I. Introduction
	II. Back Ground and Related Work
	III. Proposed Approach
	A. Step 1: Capturing and Organizing Code Dependencies
	1) Code dependencies among classes
	2) Capturing code dependencies
	3) Organizing code dependencies

	B. Step 2: Calculating Closeness and Creating CDCGraph
	1) Calculating closeness for direct code dependencies
	2) Calculating closeness for class data dependencies
	3) Generating the CDCGraph

	C. Step 3: Generating IR candidate lists
	D. Step 4: Reordering Candidate Lists based on Closeness
	1) Computing initial requirement region
	2) Re-ranking candidate links outside initial region

	IV. Experimental Setup
	A. Evaluated Systems and IR Models
	B. Metrics
	C. Threshold Calibration
	D. Research Question

	V. Results and Discussion
	VI. Threats to Validity
	VII. Conclusions and Future Work
	Acknowledgment
	References

