
Analyzing Closeness of Code Dependencies for 
Improving IR-based Traceability Recovery 

Hongyu Kuang1, Jia Nie1, Hao Hu1, Patrick Rempel2, Jian Lü1, Alexander Egyed2, Patrick Mäder3 
 

1State Key Lab fo r Novel Software 
Technology  

Nanjing University  
Nanjing, Jiangsu, China 

{hector.khy, niejia .nju}@gmail.com 
{myou, lj}@nju.edu.cn 

2Institute for Software Systems 
Engineering  

Johannes Kepler University  
Linz, Austria  

patrick.rempel@jku.at 

alexander.egyed@jku.at  

3Fakultät für Informat ik und 
Automatisierung  

Technische Universität Ilmenau 
Ilmenau, Germany 

patrick.maeder@tu-ilmenau.de 
 

Abstract—Information Retrieval (IR) identifies traces based 
on textual similarities among software artifacts. However, the 
vocabulary mismatch problem between different artifacts 
hinders the performance of IR-based approaches. A growing 
body of work addresses this issue by combining IR techniques 
with code dependency analysis such as method calls. However, so 
far combined approaches considered each code dependency as 
equally helpful for traceability recovery, not taking full 
advantage of the code dependency analysis. In this paper, we 
combine IR techniques with closeness analysis on code 
dependencies to improve IR-based traceability recovery. 
Specifically, we quantify and utilize the “closeness” for each call 
and data dependency between two classes to improve rankings of 
traceability candidate lists. An empirical evaluation based on 
three real-world systems suggests that our approach outperforms 
baseline approaches. 

Keywords—Traceability Recovery, Information Retrieval, 
Closeness Analysis, Call Dependencies, Data Dependencies 

I. INTRODUCTION 
Software traceability is defined as “the ability to interrelate 

any uniquely identifiable software engineering artifact to any 
other, maintain required links over time, and use the resulting 
network to answer questions of both the software product and 
its development process” [1]. Traceability links can support 
stakeholders in development-related tasks. In a previous study 
[2] we discovered that requirements-to-code traceability 
strongly benefits developers in performing software 
maintenance tasks. We found that subjects with traceability  
data performed on average 24% faster on a maintenance task 
and created on average 50% more correct solutions as 
compared to maintenance tasks where traceability was not 
available. These findings were based on correct and complete 
traceability. Unfortunately, recent work has suggested that high 
quality traceability links are difficu lt to obtain [3-5] due to the 
typically large numbers of required traces, frequent changes in 
software artifacts (especially in code), and informal nature of 
the relationships. 

Aiming at reducing the manual effort in traceability  
recovery by providing semi-automated tools, Information 
Retrieval (IR) has become perhaps the most widely accepted 
and applied technique in recent traceability research [4-18]. 

Typical IR-based approaches compute the textual similarity  
between two software artifacts (e.g., requirements and code) 
through IR models including Vector Space Model (VSM) [6], 
Latent Semantic Indexing (LSI) [7], and the probabilistic 
Jensen and Shannon model (JS) [8]. These approaches provide 
users with an automatically generated set of candidate 
traceability links to help narrow down the search space for 
potential links between artifacts. Due to the informal nature of 
textual software requirements and a typical vocabulary 
mismatch problem between requirements and code, 
performance of those pure IR-based approaches is significantly 
hindered. To address this issue, researchers have successfully 
improved IR-based approaches in a variety of different aspects, 
e.g., lexical analyses including hierarchies and clusters of 
artifact texts [4], feedback from users [4, 10], topic modeling  
[5], and code authors’ contexts [9].  

Meanwhile, another body of work focused on combining  
IR-based techniques with code dependency analysis to improve 
traceability recovery [13, 14, 16] and similar researches such as 
feature location [15], and concept location [17]. This kind of 
IR-based approaches utilizes structural information of the 
source code to be traced to complement textual analysis and 
has proven to be very useful [12-18]. In the fo llowing, we refer 
to this type of approach as combined IR-based approach. In 
general, a combined IR-based approach will first locate a set of 
candidate links by using IR techniques, and then either expand 
or filter the init ial set of candidate links based on analyzing 
dependencies among code elements (e.g., classes or methods). 
Recent work successfully improved IR-based approaches by 
either introducing advanced code dependency analyses such as 
the PageRank algorithm [17] and by combining code analyses 
with user feedback [13].  

However, we argue that these approaches did not fully 
exp lore available code information for two reasons. First, 
previous approaches solely considered direct code 
dependencies, i.e., calling relationships, class inheritance, and 
class usage. However, these approaches neglect the similarly  
important indirect code dependencies, i.e., data dependencies 
that exist when two code elements read or manipulate the same 
data [11, 19]. Second, previous approaches treated all code 
dependencies as equally important. We argue that this 



assumption is not always true as demonstrated in the following  
example. 

Consider a medical care system and a class named 
MonitorAdverseEvent. Th is class has calling relationships 
with to two other classes: MonitorAdverseEventAction 
and AuthDAO. The first calling relationship is abstracting three 
distinct method calls between the two classes while the second 
one is abstracting only one method call. Furthermore, 
MonitorAdverseEventAction is the only callee of 
MonitorAdverseEvent, while AuthDAO will also be called  
by other classes. Comparing the two  calling relationships, the 
former represents a stronger interaction between two classes 
than the latter. This observation has already been used as 
important heuristics in improving automated techniques for 
extracting class refactoring based on class cohesion and class 
coupling analysis [23-25].  

In this paper, we propose that the degree of interaction for 
each code dependency between two given classes in the code is 
essential for further improving combined IR-based approaches. 
With our previous finding showing that indirect data 
dependencies in the code are also helpful for understanding 
requirements-to-code traceability [11, 19], we developed a 
code dependency concept, called closeness, to quantify the 
degree of interaction based on direct and indirect code 
dependencies among classes. 

Based on this closeness measure, we further propose a 
combined IR-based approach for traceability recovery. This 
approach first utilizes IR techniques to generate candidate links 
between requirements and source code classes. The result is a 
ranked list of candidate links. This ranking is then changed in 
two steps: (1) we combine the results of IR and closeness 
analysis for all candidate links, and (2) we enhance the 
candidate list by propagating links to code classes that have a 
high closeness measure to classes that are identified in the IR 
analysis. Eventually, the set of candidate links is re-ranked  
according to the combined information of IR and code analysis. 
We evaluated our approach in an empirical study and found 
that our approach statistically significant outperforms pure IR-
based approaches (VSM, JS, and LSI) as well as two  
previously proposed combined IR-based approaches [14, 17]. 
These results were obtained on three real-world systems. 

The remainder of this paper is structured as follows. 
Section II introduces the research background and discusses 
the related work. Section III presents our proposed approach. 
Section IV introduces our research questions and how we set 
up the experiments based on three software systems for 
answering those questions. Section V reports the results of our 
experiments and answers the research questions. Section VI 
refers to limitations and threats of our work. Finally, Section 
VII concludes this paper. 

II. BACK GROUND AND RELATED WORK 
In this section we discuss related work in IR-based and 

combined traceability approaches. 

IR techniques are a widely studied and applied technology 
in traceability research [4-18]. However, an important issue 
hindering the performance of IR techniques when applied to 

traceability recovery is the vocabulary mismatch problem 
between source and target artifacts (e.g., requirements and 
code). This problem remains the focus of ongoing research in 
the field with various approaches proposed. For example, 
Cleland-Huang et al. [4] presented three strategies to enhance 
the matching results generated by their IR model based on 
probabilistic networks. The key idea of those strategies is 
introducing extra information when matching requirements 
(such as the section name of a given requirement) and code 
elements (such as the package name of a given class or method) 
and to exclude keywords promoting wrongly retrieved traces. 
Diaz et al. [9] ext racted additional “author contexts” (code 
snippets that are commented by the same author) from code to 
improve IR-based traceability recovery. When executing a 
query with a high-level artifact, first the principle developer of 
the artifact is located based on the textual similarity between 
the query and the author context. Then rankings of classes 
authored by this principle developer will be increase by an 
adaptive bonus in the IR candidate list. Gethers et al. [5] 
proposed an IR-based approach that integrates orthogonal 
information generated by relational topic modeling, which  
defines a comprehensive method for modeling interconnected 
networks of documents in order to achieve a complementary 
effect for improving traceability recovery. However, these 
approaches require rich requirements descriptions and well-
documented code, which in practice is not always the case. 
Furthermore, these approaches did not consider dependencies 
among code elements. 

In earlier work [3, 22], we studied calling relationships 
between methods and found that requirements are typically  
implemented in connected areas of the source code rather than 
being randomly distributed. In a follow-on study [11, 19] we 
found that indirect method data dependencies complement 
method call dependencies in understanding requirements 
traceability. The previous work formed the foundation for the 
proposed approach in this paper. 

There is work that incorporates code dependency analysis 
to improve IR-based approaches for traceability recovery and 
related research topics [12-18]. The majority of these 
approaches focused on analyzing direct code dependencies (i.e., 
method calls, class inheritance, and class usage). Scanniello et  
al. [17] introduced the PageRank algorithm to compute relative 
importance for each code method based on their direct code 
dependencies in the combined IR-based approach for concept 
location. The methods in IR candidate lists are then re-ranked 
by the product of their IR values and their relative importance 
values. Panichella et al. [13] extended their previous work on  
combining direct code and IR analysis [14] by utilizing user 
feedback, which had previously been demonstrated helpful for 
traceability recovery [4, 10]. Once, a user confirms a link in the 
IR candidate list between a requirement and a method, the 
rankings of methods connected to the chosen method by direct 
code dependencies will increase by an adaptive bonus. Two 
previous studies extended code analysis to indirect data 
dependencies [12, 16]. McMillan et al. [12] created an 
approach called Exemplar to find highly relevant software 
projects (similar to traceability recovery) from large archives of 
applications  based textual similarity between user queries and 
project descriptions, the API calls used in the projects, and the 



data flow among these API calls. Eaddy et al. [16] developed a 
so-called Prune Dependency Analysis based on dependencies 
among methods, fields, and types in their approach which also 
combines IR and execution tracing techniques. 

Our approach is different from the discussed ones in two 
aspects: (1) we analyze both direct and indirect code 
dependencies in the code while most  combined IR-based 
approaches focused on one type solely (except for [12, 16]), 
and (2) we propose a closeness measure for each code 
dependency while other approaches treated all code 
dependencies similarly. An exception is [17] where authors 
propose to compute each method’s relative importance based 
on its topology in a code dependency graph. However, in the 
graph all code dependencies are still treated equally. 

III. PROPOSED APPROACH 
We propose a four-step approach. First, we capture and 

organize code dependencies between classes (Step 1). Second, 
we calculate closeness for captured code dependencies and 
built a graph structure, called Code Dependency Graph 
(CDCGraph), which combines captured code dependencies 
and their calculated closeness measures (Step 2). Third, we use 
IR techniques to generate candidate links between 
requirements and classes (Step 3). Fourth, we re-rank and 
enhance the candidate list generated in the previous step based 
on the code analysis (Step 4). Each step is explained in  more 
detail in the following subsections. We use adapted excerpts of 
the iTrust system [20] for illustration of relevant concepts. 

A. Step 1: Capturing and Organizing Code Dependencies 
1) Code dependencies among classes 
We consider four kinds of dependencies between classes: 

class call dependencies, class inheritance, class usage, and 
class data dependencies. A call dependency between two 
classes Ca and Cb means that there is at least one method call 
between Ca and Cb. Figure 1 shows an iTrust excerpt covering 
three classes: EmailUtil, MonitorAdverseEventAction, 
and SendMessageAction. A class usage exists between 
MonitorAdverseEventAction and EmailUtil. In method 
MonitorAdverseEventAction.sendEmail(), an object of 
type Email is initialized and passed through method calls to 
SendMessageAction.saveReceiver() and EmailUtil. 
sendEmail(). No call, class inheritance, and class usage 
dependencies exist between EmailUtil.sendEmail() and 
SendMessageAction.saveReceiver(). 

A class data dependency between two classes Ca and Cb  
exists if two methods Ca.ma and Cb.mb read or manipulate the 
same piece of information [11]. Our focus currently restricts to 
data that is read and manipulated at runtime in  an application’s 
program memory. However, one could extend that concept to 
other data, e.g., stored in the file system or on the web. 
Methods may access that data directly or via a transitive chain 
of aliases or pointers. This complex formulation is necessary as 
the same underlying data is often accessed through references 
or even chains of references, which  are less obviously visible 
than direct code dependencies. Figure 1 shows a data 
dependency example. There are the obvious usage and call 
dependencies between MonitorAdverseEventAction and 

EmailUtil. However, there exists also a less obvious class 
data dependency between SendMessageAction and 
EmailUtil. SendMessageAction.saveReceiver() and 
EmailUtil.sendEmail() both take the same Email object 
as a parameter. Thus, all three classes (including 
MonitorAdverseEventAction which also accesses the 
Email object) access the same data object implying that all 
three are data dependent based on the Email data type. 

2) Capturing code dependencies 
To capture the discussed four kinds of code dependencies, 

we used our previously proposed dynamic analysis tool [11] 
(available at http://www.sea.jku.at/tools), which relies on 
JVMTI (Java Virtual Machine Tool Interface) to capture 
method-level call and data dependencies. We decided to use 
this tool: (1) since it instruments the JVM (Java Virtual 
Machine) during runtime, we capture actually executed code 
dependencies and handle polymorphism correctly; (2) we 
capture all dependencies simultaneously by running test cases 
in a single test run; and (3) potentially missing code 
dependencies caused by incomplete testing do not jeopardize 
our approach (further discussed in Section VI). 

Based on the captured method-level dependencies, we 
derive the discussed four kinds of class-level code 
dependencies. First, class call dependencies are abstracted from 
method call dependencies with the number of distinct method 
calls having the same calling direction. Second, class data 
dependencies are abstracted from method data dependencies 
and keep all data types in those method data dependencies (e.g., 
the Email data type). Third, class usages are abstracted from 
method data dependencies. Finally, class inheritance 
dependencies are retrieved through method call dependencies, 
i.e., the constructor of a derived class calling its base class’s 
constructor. 

3) Organizing code dependencies 

 

class MonitorAdverseEventAction{ 
private EmailUtil emailUtil;… 
public String sendEmail() { 
Email mail = new Email(); 
SendMessageAction messenger  

= new SendMessageAction(); 
messenger.saveReceiver(mail); 
emailUtil.sendEmail(mail); 
…} 

} 
class EmailUtil{ 

public void sendEmail(Email email){ 
factory.getFakeEmailDAO() 

.sendEmailRecord(email); 
}… 

} 
class SendMessageAction{ 

private MessageDAO messageDAO;… 
public void saveReceiver (Email info){ 
messageDAO.addEmailMessage 

    (info.getReceiver()); 
…} 

}  
Fig. 1. Code snippets from iTrust illustrating code dependencies 



By consulting typical combined IR-based approaches (e.g., 
[14] and [17]), we treat class call dependency, class inheritance, 
and class usage as one kind of code dependencies (namely  
direct code dependencies) while the captured class data 
dependencies as a different one. The reason why combining the 
first three code dependencies is that these kinds of code 
dependencies are structurally similar (directed links from 
source classes to sink classes) while our captured class data 
dependencies are different in structure (undirected links 
between two classes with shared data types). Meanwhile, class 
call dependency, class inheritance, and class usage largely 
overlap with each other while class data dependency slightly 
overlaps with direct code dependencies (more details refer to  
Section VI). So we calcu late closeness measures for these two 
kinds of code dependencies separately. 

Figure 2 depicts samples of captured direct code 
dependencies and class data dependencies. In the figure a 
direct code dependency is represented by a solid line with  
arrow and is labeled with the number of method calls and/or 
class usages while a data dependency is represented by a 
dashed line without arrow which is labeled with the number of 
shared data types. 

 

Fig. 2. Samples of captured class call (solid lines with arrow) and class data 
dependencies (dashed lines) between classes 

B. Step 2: Calculating Closeness and Creating CDCGraph 
We now calculate the closeness measure for captured code 

dependencies. After that we create our Code Dependency with 
Closeness Graph (CDCGraph) for the follow-up steps. 

1) Calculating closeness for direct code dependencies 
In the introduction, we gave an example to demonstrate that 

different code dependencies can indicate different degrees of 
interactions between classes. The two discussed direct code 
dependencies between the three involved classes: 
MonitorAdverseEventAction,  MonitorAdverseEvents, 
and AuthDAO are shown in Figure 2. It seems intuitive that if 
two classes share mult iple d istinct method calls and class 
usages among each other then these two classes interact more 
closely. Less straightforward, but equally important, is the 
sink’s in-degree (number of classes which reach the sink) and 
source’s out-degree (number of classes which are reached by 
the source) in a direct code dependency. Specifically, a  smaller 
sink’s in-degree indicates that the sink class is more 
concentrate to serve the source class, instead of providing a 
common service. Meanwhile, smaller source’s out-degree 
means that the source class focuses more on the service 

provided by the sink class. Based on these two observations, 
we define ClosenessDC for direct code dependencies: 

 
where N represents the number of distinct methods calls and 
class usages from a given direct code dependency between two 
classes, WeightedInDegreeSink represents sink’s in-degree, and 
WeightedOutDegreeSource represents source’s out-degree. Both 
are weighted by the number of methods and class usages, i.e., 
N of each related direct code dependency. 

For the example in Figure 2, the direct code dependency 
from MonitorAdverseEvents to AuthDAO has a closeness 
of 2*3 / ((1 + 3) + 3) which equals to 0.86, while the direct 
code dependency from MonitorAdverseEvents to  
MonitorAdverseEventAction has a closeness of 2*1 / ((1 + 
1) + (1 + 3)) which equals to 0.33. The former is higher than 
the latter, showing that MonitorAdverseEvents interacts 
more closely with MonitorAdverseEventAction than with  
AuthDAO based on our analysis. 

2) Calculating closeness for class data dependencies 
As we discussed in Section III.A, part 1, a data dependency 

between two classes exists due to shared data types among 
each other. The three shared data types in Figure 2 are shown 
in the rows of Table I. The “Occurrences” column shows how 
often a data type occurred across all class data dependencies of 
the iTrust system. The table shows that the data type 
DAOFactory is occurring much more often than the other two 
data types. A closer look at  the source code shows that this 
class is responsible for all database accesses of iTrust and 
shared by many classes of the system (a typical J2EE pattern), 
indicating that DAOFactory is too general to be helpful for 
analyzing closeness between classes. Therefore, the closeness 
of classes based on data dependencies should consider the 
importance of each shared data type. We introduce a weighting 
factor called Inverse Data Type Frequency (idtf) [11] as: 

 
where N  is the total number of captured data dependencies and 
ndt is the occurrence of a given data type in all data 
dependencies. The calculated idtf values for each data type in 
the sample are also shown in Table I (the value of N is 4844). 

TABLE I.  DATA TYPES SHARED IN THE EXAMPLE OF FIGURE 2 

# Data type Occurrences idtf Value 
1 Email 9 2.7310 
2 Java.lang.String 1118 0.6368 
3 DAOFactory 4478 0.0341 

 

By setting a Thresholdidtf, commonly shared data types, 
such as DAOFactory in the example, do not negatively impact 
the analysis result anymore. Data types with idtf values lower 
than the Thresholdidtf will be ignored and if all data types in a 
class data dependency are ignored the whole data dependency 
is ignored for analysis. Threshold calibration will be discussed 
in Section IV. Assuming a threshold of 0.6 for the example in  

 



Figure 2 the data dependency between PatientDAO and 
MonitorAdverseEventAction would be ignored. 

Like the idf concept used in IR [21], the idtf value reflects 
how much a data type is shared globally across the source code. 
A higher idtf means that a data type is more uniquely shared 
between two classes, indicating a stronger interaction. Besides, 
for a class data dependency between two classes Ci and Cj, the 
ratio between the number of shared data types in this 
dependency and the number of all data types shared by these 
two classes (from other data dependencies) can represent how 
these two classes share data types with each other “locally”, 
like the tf concept [21] in IR. The higher ratio represents a 
more d iversified data sharing between two classes.  

We define ClosenessCD for class data dependencies as: 

 
where idtf(x) represents the idtf value for data types larger than 
Thresholdidtf and DTi and DTj represent the sets of all data 
types that Ci and Cj share respectively. 

For the example in Figure 2, the class data dependency 
between MonitorAdverseEventAction and EmailUtil 
has a closeness of 2.73 / (2.73 + 0.64) which equals to 0.81, 
while the class data dependency between AdverseEventDAO 
and MonitorAdverseEventAction has a closeness of 0.64 /  
(0.64 + 2.73) which equals to 0.19. The former is higher than 
the latter, showing that MonitorAdverseEventAction 
interacts more closely with EmailUtil than with  
AdverseEventDAO based on class data dependencies. 

3) Generating the CDCGraph 
With all details described above, we can now create a Code 

Dependency Graph (CDCGraph) as G=<V, E>. Each vertex V 
represents a class of the analyzed source code and being 
annotated with its name. Furthermore, we distinguish two 
kinds of edges E in the graph: EDC representing direct code 
dependencies and ECD representing indirect class data 
dependencies between two classes. Furthermore, each code 
dependency is annotated with the calcu lated closeness measure. 
A derived CDCGraph based on the sample code of Figure 2 is 
shown in Figure 3. 

 

Fig. 3. Sample CDCGraph showing direct code dependencies as solid arcs 
with arrow and class data dependencies as dashed arcs, both annotated with 
the computed closeness measure 

C. Step 3: Generating IR candidate lists 
We use IR techniques to generate traceability link  

candidates between a given requirement and the code. 
Specifically, we perform the following steps to gain 
traceability link candidates: 

• Creating corpus. Each class of the source code is extracted 
into one document including its identifiers, name, method 
names, property names, and comments. For each 
requirement we extract a document that includes its title 
and content (e.g., preconditions, main-flow, and sub-
flows if structured use case and pure text otherwise). 

• Normalizing corpus. The documents of both requirements 
and classes are normalized by standard pre-processing 
techniques including splitting identifiers, special token 
elimination, stemming, and stop word removal. 

• Indexing corpus and computing textual similarity. We use 
tf-idf for corpus indexing and three different IR models to 
compute textual similarity: Vector Space Model (VSM) 
[6], Latent Semantic Indexing (LSI) [7], and the 
probabilistic Jensen and Shannon (JS) model [8]. 

• Generating candidate links. In candidate lists per 
requirement, we rank classes by their textual similarity to 
a requirement in descending order. 

Table II shows part of a candidate list generated using 
VSM for one use case UC36 (“Monitor adverse event”) of the 
iTrust system and the ten classes also shown in Figure 3. The 
list is ranked based on probability in descending order. An ‘X’ 
in column “Is trace” marks an actual trace between a class and 
the use case based on the oracle of correct traces for iTrust. 

TABLE II.  A SAMPLE CANDIDATE LIST BETWEEN REQUIREMENT UC36 
AND TEN CLASSES OF THE  IT RUST SYSTEM AFTER STEP 3 

# Class IR 
Value 

Is 
Trace 

1 MonitorAdverseEventAction 0.3492 X 
2 ReportAdverseEvent 0.2723  
3 MonitorAdverseEvents 0.2568 X 
4 EditPersonnelAction 0.2349  
5 AdverseEventDAO 0.2286 X 
6 AdverseEventBeanLoader 0.1926 X 
7 SendMessageAction 0.1338 X 
8 EmailUtil 0.0964 X 
9 PatientDAO 0.0529 X 

10 AuthDAO 0.0369  
 

D. Step 4: Reordering Candidate Lists based on Closeness 
We aim to improve the initial IR-based ranking traceability  

candidate lists based on the computed closeness measure. This 
step is inspired by the following two findings: (1) top ranked 
classes in IR candidate lists are likely to be traced to a given 
requirement [4]; and (2) requirements are implemented in 
connected areas of the source code, so-called requirement  
regions, rather than being randomly distributed [3]. Based on 
these two observations, we developed a re-rank algorithm 
involving two steps. First, we compute an initial requirement 
region in the CDCGraph and promote all classes in the region. 

 



Second, we re-rank other classes that are not in the initial 
region by giving bonuses based on their code dependencies to 
classes that are in the initial region. 

1) Computing initial requirement region 
To establish an initial requirement region for a given 

requirement, we choose the top ranked class of the IR 
candidate list as seed for the initial requirement region. We 
then identify close classes based on code dependencies in 
CDCGraph. This region is being established for each 
requirement using two strategies based on two kinds of code 
dependencies. Considering direct code dependencies only, if 
the top ranked class reaches (or is reached by) other classes 
through direct code dependencies with closeness measures 
equal or higher than a ThresholdDC, we add these sinks (or 
sources) in the initial region and restart the same process from 
each newly added class until no more sinks (or sources) are 
added. Meanwhile, considering class data dependencies only, 
classes with data dependencies that have closeness measures 
equal or higher than ThresholdCD and directly relate to the top 
ranked class will be added to the initial requirement region. If 
the top ranked class has no neighboring classes through either 
direct code dependencies or class data dependencies with 
closeness measures higher than the two thresholds, we put the 
next ranked class from the candidate list in the initial region  
and repeat the process until we find a class with neighbor 
classes. The IR values of newly added neighbor classes will be 
set to the same value of the top ranked class with neighbor 
classes (other than top ranked class without neighbor classes). 
We are using the following algorithm to establish initial 
requirement region based on IR candidate lists and CDCGraph: 

 

To show how Algorithm 1 works, for the example 
candidate list in Table II, the top ranked class for requirement 
UC36 is MonitorAdverseEventAction. We assume a 
ThresholdDC of 0.7 and a ThresholdCD of 0.8. According, 
MonitorAdverseEvents will be added to the initial region  
based on direct code dependencies while EmailUtil and 
SendMessageAction are added to the region based on 
indirect class data dependencies (see also Figure 3). The 
reordered IR candidate list after this step is shown in Table III. 

TABLE III.  REORDERED CANDIDATE LIST BETWEEN REQUIREMENT UC36 
AND TEN CLASSES OF THE  IT RUST SYSTEM AFTER ESTABLISHING INITIAL 

REQUIREMENTS REGION (ADAPTED RANKING VALUES IN BOLD) 

# Class Ranking 
Value 

Is 
Trace 

1 MonitorAdverseEventAction 0.3492 X 
2 MonitorAdverseEvents  0.3492 X 
3 SendMessageAction 0.3492 X 
4 EmailUtil  0.3492 X 
5 ReportAdverseEvent 0.2723  
6 EditPersonnelAction 0.2349  
7 AdverseEventDAO 0.2286 X 
8 AdverseEventBeanLoader 0.1926 X 
9 PatientDAO 0.0529 X 

10 AuthDAO 0.0369  
 

2) Re-ranking candidate links outside initial region 
We now re-rank candidate links outside initial requirement  

regions by enhancing IR values of those links based on how 
their classes interact with classes in the initial regions 
according to the CDCGraph and their original IR values. 
Similar to the previous sub-step, we use two different strategies 
on direct code dependencies and class data dependencies 
separately for the enhancement. 

Considering direct code dependencies only, for an outside 
candidate link we start from its class Cout to traverse the 
CDCGraph. We try to find a path from Cout to a class Cin that is 
already in the in itial region. A  valid path needs to satisfy two 
conditions: (1) it can only have one direction, meaning Cout 
transitively reaches or is transitively reached by Cin; (2) it  
cannot contain more than one class in initial region (to avoid 
duplicates). If a  valid path is found, we calculate the geometric 
mean of the closeness measures for all direct code 
dependencies in this path and use the following formula to  
recalculate IR value for Cout (IRDC): 

 
where IRorigin represents the original IR value of Cout, IRtop 
represents the promoted IR value of Cin, PATH represents the 
set of direct code dependencies in a discovered path between 
Cout and Cin, and ClosenessDC(x) represents the closeness 
measure for each direct code dependency in the path. It is 
possible that there are multiple paths to the same Cin and we 
only keep the one to maximize the enhanced IR value. 

On the other hand, considering class data dependencies 
only, if the class of an outside link Cout can directly connect to 
a class Cin in the initial region, we use the following formula to  
recalculate bonuses based on class data dependencies (IRCD): 

 
where IRorigin represents the original IR value of Cout, IRtop 
represents the promoted IR value of Cin, and ClosenessCD(x) 
represents the closeness measure of the class data dependency 
that directly connect Cin and Cout. 

If paths to multiple Cins (or mult iple d irect neighboring 
classes in the initial region) are found based on direct code 
dependencies (or class data dependencies), the IR value of the 
candidate link can be increased multiple t imes by taking the 
enhanced value as the original one. The IR value of the outside 

 



candidate link can be increased through both direct code 
dependencies and class data dependencies but not higher than 
Cin’s IR value. We are using the following algorithm to reorder 
candidate links outside initial requirement region: 

 

To show how Algorithm 2 works, For the example in  
Figure 3, AdverseEventDAO is outside the initial region. This 
class has one path to MonitorAdverseEventAction and is 
also directly connected to it by a class data dependency. So 
IRDC for AdverseEventDAO is 0.23 + (0.35 - 0.23) * 0.31 
which equals to 0.27. Furthermore, IRCD for this class is 0.27 + 
(0.35 - 0.27) * 0.19 which equals to 0.28. Meanwhile, there is a  
path from MonitorAdverseEventAction to 
AdverseEventBeanLoader containing two direct code 
dependencies. The geometric mean of the closeness measures 
for the two dependencies is 0.56 and IRDC for AdverseEvent 
BeanLoader is 0.19 + (0.35 - 0.19) * 0.56 which equals to 
0.28. The re-ranked list after this sub-step is shown in Table IV.  

TABLE IV.  REORDERED CANDIDATE LIST BETWEEN REQUIREMENT UC36 
AND NINE CLASSES OF THE  IT RUST SYSTEM AFTER REORDERING LINKS 
OUTSIDE INITIAL REGION (ADAPTED RANKING VALUES SHOWN IN BOLD) 

# Class IR 
Value 

Is 
Trace 

1 MonitorAdverseEventAction 0.3492 X 
2 MonitorAdverseEvents  0.3492 X 
3 SendMessageAction 0.3492 X 
4 EmailUtil  0.3492 X 
5 AdverseEventDAO  0.2818 X 
6 AdverseEventBeanLoader  0.2798 X 
7 ReportAdverseEvent 0.2723  
8 EditPersonnelAction 0.2349  
9 PatientDAO 0.1892 X 

10 AuthDAO 0.1400  

IV. EXPERIMENTAL SETUP 
In this section, we introduce our experimental setup to 

evaluate the proposed approach. In Section IV.A, we introduce 
the three evaluated systems and discuss the three studied IR 
models. In Section IV.B, we define metrics for evaluating the 
performance of the proposed approach. In Section IV.C we 
refer to threshold calibration for the proposed approach and 
finally in Section IV.D we discuss our research questions and 
the design of experiments. 

A. Evaluated Systems and IR Models 
Our evaluation is based on three real-world, medium-sized  

software systems: iTrust [20], GanttProject [27], and jHotDraw 
[28]. Table V lists basic metrics about the three systems. The 
three systems comprised 160 kLoC. We chose these systems 
because of the availability of requirements specifications and, 
more significantly, “gold standard” requirements-to-code 
traces. For jHotDraw and GanttProject, we gained high quality 
requirements-to-code traces by recruiting the original 
developers. For iTrust high quality requirements-to-code traces 
were already available [20]. The RTM of iTrust contains 
method-level traces while the RTMs of jHotDraw and 
GanttProject are at class-level. To keep our experiment  
consistent at the same trace granularity, we propagated the 
method-level traces of iTrust to class-level.  This means that 
we aggregated all traces to methods of a class on the class-level. 
To ensure the generalizability of our results, we involved three 
well-accepted IR models, namely VSM, LSI, and JS. 

TABLE V.  OVERVIEW OF THE THREE EVALUATED SYSTEMS 

 iTrust 
[20] 

Gantt 
Project[27] 

jHotDraw 
[28] 

Version 13.0 2.0.9 7.2 
Programming language Java Java Java 
KLoC 43 45 72 
Executed classes  131 124 144 
Evaluated requirements  34 16 16 
Direct code dependencies 274 452 691 
Class data dependencies 4844 1788 1815 
Trace links in RTM 248 315 221 

B. Metrics 
To evaluate the performance of different traceability  

recovery approaches, we leveraged two well-known metrics: 

 
where correct represents the set of correct links and retrieved is 
the set of all links retrieved by traceability recovery approaches. 
A common way for evaluating the performance of IR methods 
is to compare the precision values obtained at different recall 
levels resulting in a set of precision-recall points displayed as 
graphs. We further leveraged the following two metrics to 
measure the approach’s performance: average precision (AP) 
and mean average precision (MAP). These metrics are widely  
used to evaluate IR-based approaches for traceability recovery 
(e.g., [13] and [8]). AP measures how well relevant documents 
of all queries (requirements) are ranked to the top of the 
retrieved links and it is computed as:  

 



  
where r is the rank of the target artifact in an ordered list of 
links, Precision(r) denotes its precision value, isRelevant() is a 
binary function assigned 1 if the link is relevant and 0 
otherwise, and N is the total number of documents. Meanwhile, 
MAP is the mean of the AP scores over a set of queries 
(requirements) and is computed across all queries as follows: 

 
where q is a single query and Q is the total number of queries. 
For more comprehensive evaluations we use both AP and 
MAP to study our research questions. 

C. Threshold Calibration 
In Section III, we introduced four thresholds: Thresholdidtf, 

ThresholdDC, ThresholdCD, and the k  value for LSI. Based on 
previous investigations [11] and case study results, we defined 
a fixed Thresholdidtf (1.4). To calibrate ThresholdDC, we first 
used the 3σ criterion to filter out outliers (closeness measure 
three times higher or lower than the standard deviation σ) from 
the set of ClosenessDC. We then used min-max normalization to 
rescale closeness measures into [0, 1]. Filtered abnormally high  
closeness measures were set to 1 and abnormally low closeness 
measures were set to 0 in the rescaled range. We defined a 
fixed threshold for all nine experiment variations to maximize 
the performance of our approach based on the proposed metrics 
in Section IV.B. We used the same process to find ThresholdCD. 
This led to a ThresholdDC of 0.7 and a ThresholdCD of 0.9. 
These values are adaptive thresholds for establishing the initial 
requirement region for a given requirement only. We still use 
original closeness measures to re-rank candidate links outside 
the initial region. For the k  value of the LSI method, we found 
that k = 85 provided the best accuracy for all three systems. 

Since we use the same fixed  four thresholds for all nine 
experiment variations, they are not biased by varying 
thresholds. For new datasets we propose the discussed 
calibration process to identify thresholds. 

D. Research Question 
In this paper, we aim to study if combined IR-based 

approaches for traceability recovery can be improved by 

considering additional code dependencies. Therefore, we 
formulated the following research question: 

Can our approach outperform baseline approaches for IR-
based traceability recovery? 

To study RQ, we compared the results of our approach with 
three baseline approaches: a pure IR-based approach (namely  
IR-ONLY), the pioneer of combined IR-based approaches 
Optimistic Combination of Structural and Textual Information 
(O-CSTI [14]), and the most recent one using PageRank  [17]. 
We name our proposed approach as TRICE (Traceability 
Recovery based on Information retrieval and ClosEness 
analysis). 

Besides the proposed metrics in Section IV.B, we used a 
statistical significance test to verify that the performance of 
TRICE is significantly better than the performance of the 
baseline approaches. By consulting the significance test used in 
[29], we use the F-measure at each recall point as the single 
dependent variable of our study. We use the F-measure 
because we want to know whether TRICE improves both 
precision and recall. The F-measure is computed as: 

 
where P represents precision and R represents recall and F is 
the harmonic mean of P and R. A higher F-measure means that 
both precision and recall are high. Because the F-measure is 
the same for each approach at the same level of recall (i.e., the 
data were paired), we decided to use the Wilcoxon rank sum 
test [26] to test the following null hypothesis: 

H0: There is no difference between the performance of 
TRICE and baseline approaches 

We use α = 0.05 to accept or refute the null hypothesis. 

V. RESULTS AND DISCUSSION 
Table VI shows the results of the three evaluated systems 

(rows). For each system and each IR technique (columns), we 
compared the performance of the three baseline approaches 
with TRICE (sub rows). Therefore, we leveraged the 
introduced performance metrics AP and MAP (sub column 1 
and 2). Sub column 3 shows the p-value of the F-measure 
significance test. The p-value results indicate that TRICE 

TABLE VI.  NUMBER OF COMPUTED METRICS AND P-VALUE EVALUATING THE PERFORMANCE OF EACH APPROACH FOR ALL NINE EXPERIMENT VARIATIONS 

 VSM LSI JS 
AP MAP p-value AP MAP p-value AP MAP p-value 

iTrust 

IR-ONLY 45.18 58.69 0.02 45.47 59.92 0.03 42.21 56.90 < 0.01 
TRICE 49.21 61.65 - 49.12 62.70 - 49.33 62.61 - 
PageRank 42.42 54.03 0.13 39.07 49.47 0.82 30.76 39.31 < 0.01 
O-CSTI 37.24 44.87 0.63 34.17 42.02 0.14 27.24 34.80 < 0.01 

Gantt Project 

IR-ONLY 42.85 49.80 < 0.01 43.94 51.70 < 0.01 36.30 46.77 0.01 
TRICE 46.42 54.00 - 43.56 52.40 - 40.11 49.70 - 
PageRank 43.34 48.84 < 0.01 41.18 45.38 < 0.01 39.76 43.98 < 0.01 
O-CSTI 42.84 47.70 < 0.01 38.06 41.18 < 0.01 35.80 39.20 < 0.01 

JHotDraw 

IR-ONLY 41.13 50.09 0.35 42.23 49.51 0.02 37.06 44.86 0.01 
TRICE 43.24 52.05 - 44.51 51.91 - 39.20 47.10 - 
PageRank 26.12 29.24 < 0.01 22.48 22.52 < 0.01 18.24 18.28 < 0.01 
O-CSTI 21.74 23.00 < 0.01 18.95 20.23 < 0.01 18.57 19.92 < 0.01 

 



outperforms the baseline approaches in most cases. In 22 of 27 
cases the F-measure for results of TRICE is significantly 
higher than the F-measure of the compared baseline approach 
(p-value < 0.05). Moreover, TRICE generally outperforms all 
three baseline approaches in both AP and MAP. The only 
exception is comparing with IR-ONLY on Gantt-LSI where 
TRICE is slightly worse in AP (less than 0.5). Figure 4 
compares the precision/recall curves for all nine experiments, 

illustrating the performance of the four approaches. The results 
are grouped by evaluated system and IR model. 

As shown in both Table VI and Figure 4, our experiments 
did not provide any evidence that O-CSTI and PageRank can  
significantly outperform the IR-ONLY approach. Thus, we 
focus on comparing TRICE with IR-ONLY. Table VII shows 
the differences between the precision values and the 
differences of the number of false positives achieved with 

TABLE VII.  IMPROVEMENT OF PRECISION AND REDUCTION OF NUMBER OF FALSE POSITIVES (IN BOLD) AT DIFFERENT LEVELS OF RECALL (COMPARISON 
BETWEEN TRICE AND IR-ONLY) 

 Recall (20%) Recall (40%) Recall (60%) Recall (80%) Recall (100%) 
 Precision FP Precision FP Precision FP Precision FP Precision FP 
VSM VSM +8.64% -6 +5.12% -13 +3.00% -89 +2.74% -280 +0.43% -275 

JS +18.58% -13 +21.37% -64 +5.76% -196 +2.57% -445 0.00% 0 
LSI +1.46% -1 +4.52% -12 +3.40% -86 +4.39% -425 +0.33% -234 

Gantt Project VSM +7.86% -14 +6.03% -36 +3.81% -52 +0.62% -28 0.00% +1 
JS +1.75% -6 +5.33% -37 +1.11% -15 -0.46% +13 0.00% 0 
LSI -1.94% +3 +2.92% -20 +3.24% -45 +2.63% -83 +0.28% -30 

jHotDraw VSM +1.95% -2 +4.16% -20 +0.91% -14 -3.81% +185 0.00% 0 
JS -0.68% +1 +6.97% -31 +2.54% -42 +2.52% -142 +0.06% -13 
LSI -2.20% +2 +4.66% -21 +3.54% -51 +0.23% -12 +0.15% -34 

 

 

 

   
 

Fig. 4. Precision/Recall curves for all nine experiment variances grouped by evaluated systems (iTrust, Gantt, jHotDraw) and IR models (VSM, LSI, JS) 



TRICE and IR-ONLY at different levels of recall for nine 
experiment variat ions. From Figure 4 and Table VII we 
observe an improvement of precision up to 21.37% (on iTrust-
JS at 40% recall) and an improvement of reduced false 
positives up to 445 (on iTrust-JS at 80% recall). We also 
observed that TRICE barely introduced extra false positives 
compared to IR-ONLY at each recall level except for one place 
where extra 185 false positives were introduced: jHotDraw-
VSM at  80% recall. These findings are very beneficial because 
by adding our closeness metric (closeness measures and re-
rank algorithms) to IR-based traceability recovery, the 
performance of the combined approach can be effectively 
improved with few extra false positives introduced. 

We made two additional observations. First, TRICE makes 
fewer improvements at 100% recall compared to other recall 
levels. This observation is similar with those from other case 
studies (such as [9, 13]) and confirms that there is an upper 
bound to the performance improvements when aiming at 
recovering all correct links, which is difficu lt to overcome. The 
other observation is that TRICE can make bigger 
improvements if it is based on IR candidate lists with higher 
quality, (e.g., iTrust-JS against jHotDraw-VSM), implying that 
TRICE would further benefit from improvements for IR-based 
traceability recovery and even collaborate with those. 

Overall, the results indicate that our proposed closeness 
analysis is useful to improve IR-based traceability recovery. 
Such an improvement is particularly evident when the recall is 
between 20% and 80% 

VI. THREATS TO VALIDITY 
A possible threat to validity of our results is the 

incompleteness of code dependencies because of missed call 
and data dependencies due to the incompleteness nature of 
dynamic analysis. However, we consider this incompleteness 
not as a serious threat regarding our experiment results. 
Missing dependencies could have negatively impacted TRICE 
leading to too pessimistic observations instead. 

In Section III.A we mentioned that our approach treats 
class call dependencies, class usage and class inheritance as 
one kind of code dependency (direct code dependency) since 
they are structurally similar to each other. Furthermore, we also 
found that these three kinds of code dependencies largely 
overlap with each other based on our investigations to all 
evaluated systems. First of all, since class inheritance is 
retrieved through method call dependencies, i.e., the 
constructor of a derived class calling its base class’s 
constructor, it is totally overlapped with class call dependency. 
Second, although class usage is abstracted from method data 
dependencies, in iTrust 113 class usages (119 in total) overlap 
with class call dependencies (268 in total); in jHotDraw 105 
class usages (105 in total) overlap with class call dependencies 
(691 in total); and in GanttProject 85 class usages (165 in total) 
overlap with class call dependencies (372 in total). Th is 
observation is reasonable because if a class is using another 
class as its field then the former generally calls the methods of 
the latter unless the fields of the latter are directly accessible to 
the former, which is not common in practice (GanttProject is a 
little d ifferent since its source code contains several inner 

classes). In contrast, in iTrust 140 class data dependencies 
(4844 in total) overlap with direct code dependencies (274 in  
total); in jHotDraw 415 class data dependencies (1815 in total) 
overlap with d irect code dependencies (691 in  total); and in  
GanttProject 296 class data dependencies (1788 in total) 
overlap with direct code dependencies (452 in total). Th is 
investigation provides support for our approach to treat direct 
code dependencies and class data dependencies separately. 

Another possible threat to validity of our results is the 
selection of evaluated systems. It is difficult to find software 
systems that are executable, contain rich requirements for IR 
techniques to work, that have existing traceability links, and 
are freely accessible. For example, we cannot use the well-
researched data sets provided by CoEST [1] (such as 
EasyClinic and eTour) to evaluate our approach because they 
do not contain executable versions of their systems and we 
cannot capture high-quality code dependencies from these 
systems. We cannot claim generalizability of results to 
different kinds of systems based on the three medium-sized  
systems. However, we consider our findings still relevant since 
we evaluated three real-world systems from different domains 
(iTrust: J2EE medical care system, GanttProject: project  
planning, and jHotDraw: drawing tool). Furthermore, we 
combined the evaluated systems with three well-known yet 
distinct IR models (i.e ., VSM, LSI, and JS) to generated nine 
experiment variat ions in total (e.g., iTrust-JS and jHotDraw-
VSM). We then compare our approach with baseline 
approaches based on these experiment variations. 

VII. CONCLUSIONS AND FUTURE WORK 
Dependencies in source code (e.g., method calls) have been 

repeatedly used in solutions to improve IR-based traceability 
recovery. However, these approaches focused on direct code 
dependencies for traceability recovery and treated each code 
dependency equally. In this paper, we considered additionally 
class data dependencies and proposed a closeness measure to 
quantify the degree of interaction between two classes. We 
further proposed an approach to improve IR-based traceability 
recovery by incorporating the closeness measure. We evaluated 
our approach on three software systems and found that it 
outperforms three baseline approaches significantly. 

Currently, our approach is analyzing direct code 
dependencies and class data dependencies first separately and 
then combined. In future work we want to find out whether 
certain combinations (or patterns) on different kinds of code 
dependencies will also be helpful for traceability recovery. 
Another promising research direction is to combine our 
closeness analysis with user feedback for IR-based approaches. 
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